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Abstract

Three innovative components (an annular gap spray system, a booster bottom and an outlet filter) have been developed by
Innojet Technologies to improve fluid bed technology and to reduce the common interference factors (clogging of nozzles and
outlet filters, spray loss, spray drying and fluidized bed heterogeneity). In a fluid bed granulator, three conventional components
have been replaced with these innovative components. Validation of the modified fluid bed granulator has been conducted using
a generalized regression neural network (GRNN). Under different operating conditions (by variation of inlet air temperature,
liquid-binder spray rate, atomizing air pressure, air velocity, amount and concentration of binder solution and batch size), sucrose
was granulated and the properties of size, size distribution, flow rate, repose angle and bulk and tapped volumes of granules were
measured. To confirm the method’s validity, the trained network has been used to predict new granulation parameters as well
as granule properties. These forecasts were then compared with the corresponding experimental results. Good correlation has
been obtained between the predicted and the experimental data. From these findings, we conclude that the GRNN may serve as
a reliable method to validate the modified fluid bed apparatus.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Current good manufacturing practices as well as
validation requirements, necessitate the development
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the-art method of granulating, offers the advantage of classified as apparatus, process and product param-
combining the various stages of conventional wet gran- eters Kristensen and Schaefer, 1987The pro-
ulation in one process. It prevents contamination and cess of size enlargement of particles in the flu-
saves processing space, time and cost. Developmenidized bed is a complex interaction involving these
of other methods of fluidized bed technology enables parameters, which affect the final quality of the
the utilization of this technique also for coating, granules. Given such complex relationships, con-
spheronization and layering-@nakoshi et al., 1980; ventional data-processing methods are not suitable
Jager and Bauer, 1982; Jones, 1988; Jozwiakowski for investigation of the process of size enlarge-
et al., 1990; Egermann anddgel, 1995; Achanta et ment. They often lead to unsatisfactory results due
al., 1997; Vertommen and Kinget, 1997; Bauer et al., to non-linear relationships within the parameter set.
1998; Pisek et al., 2000 This problem can be overcome by the use of non-
The benefits of fluidized bed technology are well linear calculation methods like artificial neural net-
enough known to display the importance of innovative works (Murtoniemi et al., 1994; Watano et al., 1994,
improvements to reduce the interference factors and to 1997H.
make fluidized bed processes more economic and safer.  Artificial neural networks have been formerly
Some disadvantages have been discussed before. Thesapplied in different areas of studie¥efhg-Pedersen
include the high energy consumption, the enhanced risk and Modi, 1993; Klocker et al., 2002They consti-
of explosion due to the large amount of oxygen con- tute a set of mathematical methods and algorithms
veyed by the fluidizing air and the problem of air pol- designed to mime the functions (association, learning
lution by dust and solvents due to the structure of the and generalization) of the human braiiupan and
standard fluidized bed equipments, where the fluidizing Gasteiger, 1999 From the large number of different
air is blown to the atmosphere. Different methods have network-learning processes, a generalized regression
been suggested to reduce these problems: methods ofieural network (GRNN) has been selected for the
preventing explosions in fluidized bed granulators have presented study.
been recommended W§ulling (1977a, 1977b)in or-
der to retain dust of highly toxic materials, a secondary
high-efficiency filter has been suggestétigtensen 2. Materials and methods
and Schaefer, 1987Pollution of air by solvents can
be prevented by using a specially constructed fluidized 2.1. Equipment
bed operating in a closed system, where the solvent is
recovered by cooling{ristensen and Schaefer, 1987 For wet granulation, (a) the “Innojet annular gap
However, problems still exist: such as clogging of noz- spray nozzle Rotojet type IRN 2” with 2mm annu-
zles and outlet filters, spray loss, spray drying and flu- lar gap diameter, 6.28 mm developed length, 0.25 mm
idized bed heterogeneity especially with the use of the gap width, 1.57 mrh free spraying cross-section and
top spray method, which causes heterogeneous gran-2.09 nl/s air consumption at 1 bar spraying pressure, (b)
ulation with overwetting of some portions and under- the “Innojet booster Opojettype ITS 140" with 140 mm
wetting of other portions of the feed material. The inno- diameter, four dividing gaps, 1.5mm gap length and
vative components (spray system, booster bottom and80-160 ni/h air velocity, and (c) the “Innojet filter Sep-
outlet filter) have been developed by Innojet Technolo- ajet type 280" have been incorporated into a laboratory
gies to reduce these interference factors. In a fluid bed fluid bed granulator with a product container of 5 | feed
granulator, the conventional nozzle, the outlet filter and material capacity.
the perforated base plate have been, respectively, re- The annular gap spray nozzle consists of rotating
placed with the aforesaid novel devices. The aim of the annular gaps. Each rotating annular gap liquid cross-
presented study was the investigation of process andsection is both internally and externally surrounded by
product parameters required to validate the modified additional annular gap cross-sections for spraying and
apparatus. supporting air. The three media gap widths were de-
In fluid bed granulation technology, the parame- fined or dimensioned at a constant ratio to each other
ters that influence the granule properties have been(Fig. 1).
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Spray air Liquid
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Fig. 1. The design of the Innojet gap spray nozzle Rotojet type IRN 2.

The base plate, which refers to its function is called The batch size, the amount and concentration of
“booster”, consists of two semicircular surfaces that binder solution have been investigated as product pa-
create two currents directed towards each other. Therameters, while the inlet air temperature, atomizing air
horizontal air and product streams are diverted verti- pressure, liquid-binder spray rate and air velocity have
cally at the dividing centre lineHig. 2). been investigated as process parameters.

The filter is of a special folded configuration, with To investigate individual aforesaid parameters, a se-
an uninterrupted self-dependent cleaning system. Theries of granulation processes have been performed and
special folded design which causes an enlargement ineach investigated parameter was set at different values,
the filter surface is intended to increase the air transition while keeping the other investigated parameters con-
capacity of the filterfig. 3). stant.

The gap spray nozzle has been installed in the
booster bottom to enable the use of the bottom spray 2.3, Evaluation of produced granules
method.

The inlet air temperature together with the outlet  Following each granulation, the statistical granule
temperature and the temperature of the product con-sjze, the size distribution, the bulk and the tapped vol-
tainer have been monitored by an industrial controller ymes, the flow rate and the repose angle of the granules

Philips model KS 90. have been determined.
Particle size analysisiE 5) was performed on a lab-
2.2. Granulating materials oratory sieve machine Retsch type VE 1000 with am-

plitude 0.2 for 6 min. The particle size distribution ob-
Sucrose (Ph E 97, Agrana International) has been tained was plotted on a Rosin, Rammler, Sperling, and
granulated using glucose syrup as a feed material. Bennet (RRSB) nomogram. The size corresponding to
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Fig. 2. The functioning of the Innojet booster Opojet type ITS 140.

63.2% on the passage percentage axis was taken as th2.4. Computational methods
statistical diameter. The geometric mean granule size,

dso, was taken by the use of log normal distribution. A generalized regression neural network (GRNN)
The particle size distribution was taken by calculating was trained for the studied granulation process.
the geometric standard deviatiaryj. GRNNs were introduced by Specht in 1991 and

The flow rate (=5) was measured as the required estimate the most probable value for continuous de-
time (s) for granule samples (100 g) to flow through a pendent values of a given dataset. They compute the

9.5 mm orifice. probability density functions of the given patterns
The bulk volume of each sample (50 g) was mea- and finally attribute them to the value to which they
sured in a 100 ml graduated cylinder<(5). most likely belong $pecht, 1991 GRNNs are feed-

After each granulation process, the residual mois- forward networks which are comprised of four lay-
ture of granules was determined using an electronic ers Fig. 4). The input layer is constituted by a vary-
moisture analyzer Scaltec type SMO 01, which uses ing number of neurons, which is equal to the num-
thermogravimetric principles. At the end of the granu- ber of independent features the network is trained on.
lation process, the granules have been dried for 5min. The normalized input vector is copied onto the pat-
During the drying process, samples were taken when tern units in the pattern layer, each representing a
the bed temperature had risen 20% beyond the final training case. An exponential activation function is
granulationtemperatura € 3). Asample weighingap-  applied and the corresponding activation level is for-
proximately 5 g was spread onto an aluminium pan and warded to the summation unit, where the density esti-
was placed in the analyzer. The sample was heated tomate on each pattern of each group or possible value
100°C and evaporative moisture losses were recorded is summarized. Finally, a decision with Bayesian the-
and automatically reported as percent moisture content.ory is established in the fourth layer (decision layer)
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Fig. 3. Innojet filter Sepajet type 280.

(Specht, 1990; Young et al., 1999; Simon and Nazmul, ber of combinations of weights and is less likely to

2001).
A principal advantage of GRNNSs is that they in-

end in a local minimumB&runeau, 200l Therefore,
no test and verification sets are necessary, and in prin-

volve a one-pass learning algorithm and are conse- ciple all available data can be used for the training of
quently much faster to train than the well-known back- the network. To ensure that the results of the trained

propagation paradigmSpecht, 1990; Specht, 1991

network are real and no artefacts of the training pro-

Furthermore, they differ from classical neural networks cess, an external validation can be done by predicting
in that every weight is replaced by a distribution of new granulation parameters for experiments. The ex-
weights. This leads to the exploration of a large num- perimentally obtained granule properties may then be

Input Pattern Summation Output
layer layer layer layer

Fig. 4. Architecture of generalized regression neural networks.

compared to those predicted by the network.

3. Results and discussion

The presented GRNN has been trained by the Trajan
software packagel¢ajan Neural Networks 5.0, 1999
As input, the seven product and process parameters
have been used, namely batch size, amount and con-
centration of binder solution, liquid-binding spray rate,
atomizing air pressure, inlet air temperature and air ve-
locity. The output has been defined as the correspond-
ing granule properties such as the statistical granule
size, the granule size distribution, the flow rate, the re-
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Fig. 5. Prediction accuracy of the GRNN for the training set when individual parameters are excluded.

pose angle and the difference between bulk and tappedshown that the moisture content of granules is signifi-
volumes. Consequently, the obtained network archi- cantly affected by varying the amount of binder solu-
tecture consisted of seven units in the input layer, 45 tion, the binder spray rate and the atomizing air pres-
pattern neurons, six neurons in the summation layer sure. On the one hand, an increase of the amount of
and five output units. The averaged absolute error for binder solution and the spray rate, and on the other
the prediction of the granule properties from the gran- hand, a decrease of the atomizing air pressure resulted
ulation parameters was found to be 0.050, whereby the in increased moisture levels causing size enlargement
error has been defined as the sum of the squared differ-of the produced granules. Granules with a wide size
ences between the predicted and actual output valuesdistribution are caused by too high or not sufficient
on each output unit. moisture levels in the bed. Therefore, achieving the op-
The contribution of each parameter to the predic- timal moisture content during the granulation process
tion of the granule properties has been estimated by ais the key for obtaining granules with a narrow size dis-
sensitivity analysis. During this analysis, it has been tribution. Surprisingly, there have been no significant
tested how the GRNN would cope if each of the pro- correlations between the inlet air temperature and the
cess parameters in turn were unavailable. Therefore,mean granule size. Correlations of atomizing air pres-
the experimental data has been submitted to the net-sure, spray rate and amount of binder solution with
work repeatedly, with each process parameter in turn mean granule size, granule size distribution and resid-
treated as missing, and the resulting network error has ual moisture of granules are illustratedfig. 6. The
been reported. If an important parameter was deleted inimportant role of the moisture content in size enlarge-
this fashion, the error increased significantly; whereas ment of particles was previously describ&di§tensen
if an unimportant one has been removed, the error wasand Schaefer, 1987; Watano et al., 1991, 1997a; Frake
only slightly influenced. The results of this sensitivity et al., 1997; Rantanen et al., 1998; Abberger, 2001
analysis are illustrated iRig. 5. It can be seen that the The bulk and tapped volumes have been signifi-
most important descriptor contributing to the final net- cantly affected by increasing the amount of binder so-
work was the atomizing air pressure. Its removal from lution (Fig. 7) and the flow rate has been correlated to
the input variable resulted in an increased error of 0.11. the amount of binder solutiorfr{g. 8).
The other most important descriptors were the air ve-  The standard Pearson® correlation coefficients
locity, the spray rate and the amount of binder solution. between the experimentally measured and by GRNN
Their removal from the input variable resulted in anin- predicted output values are depictedTable 1 Fur-
creased error of 0.09, 0.07 and 0.085, respectively.  thermore, the corresponding prediction accuracy for
This is confirmed by the analyses of the properties the different granule properties is summarized which
ofthe corresponding test granules. These analyses havéhas been evaluated by consideriti@0% cut-offs of
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Fig. 6. Correlations of atomizing air pressure, spray rate, amount of binder solution and the air velocity to mean granule size, granule size
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with either mean granule size or residual moisture of granules.



146 S. Salar Behzadi et al. / International Journal of Pharmaceutics 291 (2005) 139-148

o
=
= 100 100 E
t e W = g
E oo 60 2
3 S
g 40 40 2
= 3
Z 20 20 g
@ 9 : : o s

a1 143 280 408 500 600

Amount of binder solution (g)

[—m—Y = Bulk vol. ——Y = Tapped vol |

Fig. 7. Correlation of amount of binder solution with either bulk or
tapped volumes.

30 4
26 4
20 +
154
10

Flow rate (g/s)

541

0 T T T T
91 143 280 408 500 600

Amount of binder solution (g)

Fig. 8. Correlation of amount of binder solution with flow rate.

the highest experimentally measured values. The over-
all prediction accuracy is very impressive (93.8%), only
6.2% of the predictions lie outside the applied0%
regions.

To confirm the network’s ability to predict granule
properties, the trained GRNN has been used to pre-
dict granulation parameters resulting in defined gran-
ule properties. For this process, mean granule sizes be-
tween 250 and 80@m have been chosen. The proper-
ties of the mathematically forecasted and experimen-
tally obtained granules have then been compared and
were all found to be within the-10% cut-offs.

Table 1
Correlation coefficients and prediction accuracy for the studied gran-
ule properties

Granule property Correlation Prediction
coefficient accuracy (%)

Mean granule size 0.94 91.1

Size distribution 0.96 91.1

Flow rate 0.97 95.6

Angle of repose 0.95 97.8

(Bv—Tv)? 0.92 93.3

a (Bv — Tv) = difference between bulk and tapped volumes.

Table 2
Values of predicted granulation process parameters and their corresponding artificial and experimental results

Granule properties as obtained by

experimentt: S.D.

Granule size Flow rate Repose (Bv—Tv)@ Mean granule Granule size Flow

Granule properties as
distribution

predicted by GRNN

Mean

Granulation process parameters

(Bv—Tv)2

(ml)

Repose

Air

Atomizing air Spray

Inlet air

Batch Batch Concentration ofAmount of

number size (g) binder solution binder

angle ()

rate (g/s)

distribution
(nm)

size @m)

angle ¢) (ml)

(9/s)

velocity granule

temperaturepressure (baryate

solution (g) (°C)

400
200
400
408
408

size wm) (um)

(g/min) (m/s)

(%, wiw)

30
30
30
30
32

1.62+ 0.016 10.5+ 0.97 27.91+ 0.84 13.0+ 0.66

1.58+ 0.014

309.52

14.1
345+ 15.26

26.1

26.7

10
.16
a7

1.57
1.61
1.7

298

20
22
20
20
22

20
30
20
25
30

1.1
difference between bulk and tapped volumes.

0.6
0.6
0.5
0.6

60
60
60
60
50

1400
1400
1400
1400
1400

a(Bv-Tv)

1
2
3
4
5

6.3+ 0.91 27.10+ 1.03 14.3+ 0.50

14

350
418

1.82+ 0.020 16.8+ 0.63 31.38+ 1.20 17.5+ 0.50

403t 9.22

17.4

322

1.72+ 0.013 18.3+ 0.06 27.10+ 0.92 15.5+ 0.47
1.95+ 0.018 20.6+ 1.30 28.00+ 1.01 13.5+ 0.54

646.44

28.6

19
21

1.85
2.1

630
781

#900.11

13

26.5
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The forecasted values from GRNN for five batches
are given inTable 2together with the corresponding
experimental results.

4. Conclusions

The GRNN analysis enabled us to investigate the
complex relationship between the individual parame-

ters affecting size enlargement and granule properties
and to predict granule properties such as, size, size dis-
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Jager, K.F., Bauer, K.H., 1982. Auswirkungen der Gutbewegung im

Rotor-Wirbelschicht-Granulator auf die Aufbauagglomeration.
Pharm. Ind. 44, 193-197.
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maceutical Technology, vol. 1. Marcel Dekker, New York, p.
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tribution, bulk and tapped volumes and flow rate from jozwiakowski, M.J., Jones, D.M., Franz, R.M., 1990. Characteriza-

different process and product parameters. Good corre-
lation has been obtained between predicted and exper-

imental data.
Investigations of the particle size and particle size
distribution of granules, produced by adjusting differ-

ent process and product parameters, showed the key

role of the atomizing air pressure in the size enlarge-

ment of particles. The otherimportant parameters were

the spray rate, the amount of binder solution and the
air velocity.

The innovative modifications provided the possibil-
ity to produce granules with compact structures, low
porosity and narrow particle size distributions.
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