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Abstract

Three innovative components (an annular gap spray system, a booster bottom and an outlet filter) have been developed by
Innojet Technologies to improve fluid bed technology and to reduce the common interference factors (clogging of nozzles and
outlet filters, spray loss, spray drying and fluidized bed heterogeneity). In a fluid bed granulator, three conventional components
have been replaced with these innovative components. Validation of the modified fluid bed granulator has been conducted using
a generalized regression neural network (GRNN). Under different operating conditions (by variation of inlet air temperature,
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iquid-binder spray rate, atomizing air pressure, air velocity, amount and concentration of binder solution and batch size
as granulated and the properties of size, size distribution, flow rate, repose angle and bulk and tapped volumes of gra
easured. To confirm the method’s validity, the trained network has been used to predict new granulation paramete
s granule properties. These forecasts were then compared with the corresponding experimental results. Good cor
een obtained between the predicted and the experimental data. From these findings, we conclude that the GRNN m
reliable method to validate the modified fluid bed apparatus.
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1. Introduction

Current good manufacturing practices as wel
validation requirements, necessitate the develop
of predictable and controllable wet granulation p
cedures having as few processing steps as pos
Fluidized bed granulation as the economical, state
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the-art method of granulating, offers the advantage of
combining the various stages of conventional wet gran-
ulation in one process. It prevents contamination and
saves processing space, time and cost. Development
of other methods of fluidized bed technology enables
the utilization of this technique also for coating,
spheronization and layering (Funakoshi et al., 1980;
Jäger and Bauer, 1982; Jones, 1988; Jozwiakowski
et al., 1990; Egermann and Flögel, 1995; Achanta et
al., 1997; Vertommen and Kinget, 1997; Bauer et al.,
1998; Pisek et al., 2000).

The benefits of fluidized bed technology are well
enough known to display the importance of innovative
improvements to reduce the interference factors and to
make fluidized bed processes more economic and safer.
Some disadvantages have been discussed before. These
include the high energy consumption, the enhanced risk
of explosion due to the large amount of oxygen con-
veyed by the fluidizing air and the problem of air pol-
lution by dust and solvents due to the structure of the
standard fluidized bed equipments, where the fluidizing
air is blown to the atmosphere. Different methods have
been suggested to reduce these problems: methods of
preventing explosions in fluidized bed granulators have
been recommended byKülling (1977a, 1977b). In or-
der to retain dust of highly toxic materials, a secondary
high-efficiency filter has been suggested (Kristensen
and Schaefer, 1987). Pollution of air by solvents can
be prevented by using a specially constructed fluidized
bed operating in a closed system, where the solvent is
r 7
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classified as apparatus, process and product param-
eters (Kristensen and Schaefer, 1987). The pro-
cess of size enlargement of particles in the flu-
idized bed is a complex interaction involving these
parameters, which affect the final quality of the
granules. Given such complex relationships, con-
ventional data-processing methods are not suitable
for investigation of the process of size enlarge-
ment. They often lead to unsatisfactory results due
to non-linear relationships within the parameter set.
This problem can be overcome by the use of non-
linear calculation methods like artificial neural net-
works (Murtoniemi et al., 1994; Watano et al., 1994,
1997b).

Artificial neural networks have been formerly
applied in different areas of studies (Veng-Pedersen
and Modi, 1993; Klocker et al., 2002). They consti-
tute a set of mathematical methods and algorithms
designed to mime the functions (association, learning
and generalization) of the human brain (Zupan and
Gasteiger, 1999). From the large number of different
network-learning processes, a generalized regression
neural network (GRNN) has been selected for the
presented study.

2. Materials and methods

2.1. Equipment
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ecovered by cooling (Kristensen and Schaefer, 198).
owever, problems still exist: such as clogging of n
les and outlet filters, spray loss, spray drying and
dized bed heterogeneity especially with the use o
op spray method, which causes heterogeneous
lation with overwetting of some portions and und
etting of other portions of the feed material. The in
ative components (spray system, booster bottom
utlet filter) have been developed by Innojet Techn
ies to reduce these interference factors. In a fluid
ranulator, the conventional nozzle, the outlet filter

he perforated base plate have been, respectivel
laced with the aforesaid novel devices. The aim o
resented study was the investigation of process
roduct parameters required to validate the mod
pparatus.

In fluid bed granulation technology, the param
ers that influence the granule properties have
For wet granulation, (a) the “Innojet annular g
pray nozzle Rotojet type IRN 2” with 2 mm ann

ar gap diameter, 6.28 mm developed length, 0.25
ap width, 1.57 mm2 free spraying cross-section a
.09 nl/s air consumption at 1 bar spraying pressure

he “Innojet booster Opojet type ITS 140” with 140 m
iameter, four dividing gaps, 1.5 mm gap length
0–160 m3/h air velocity, and (c) the “Innojet filter Se
jet type 280” have been incorporated into a labora
uid bed granulator with a product container of 5 l fe
aterial capacity.
The annular gap spray nozzle consists of rota

nnular gaps. Each rotating annular gap liquid cr
ection is both internally and externally surrounded
dditional annular gap cross-sections for spraying
upporting air. The three media gap widths were
ned or dimensioned at a constant ratio to each o
Fig. 1).
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Fig. 1. The design of the Innojet gap spray nozzle Rotojet type IRN 2.

The base plate, which refers to its function is called
“booster”, consists of two semicircular surfaces that
create two currents directed towards each other. The
horizontal air and product streams are diverted verti-
cally at the dividing centre line (Fig. 2).

The filter is of a special folded configuration, with
an uninterrupted self-dependent cleaning system. The
special folded design which causes an enlargement in
the filter surface is intended to increase the air transition
capacity of the filter (Fig. 3).

The gap spray nozzle has been installed in the
booster bottom to enable the use of the bottom spray
method.

The inlet air temperature together with the outlet
temperature and the temperature of the product con-
tainer have been monitored by an industrial controller
Philips model KS 90.

2.2. Granulating materials

Sucrose (Ph E 97, Agrana International) has been
granulated using glucose syrup as a feed material.

The batch size, the amount and concentration of
binder solution have been investigated as product pa-
rameters, while the inlet air temperature, atomizing air
pressure, liquid-binder spray rate and air velocity have
been investigated as process parameters.

To investigate individual aforesaid parameters, a se-
ries of granulation processes have been performed and
each investigated parameter was set at different values,
while keeping the other investigated parameters con-
stant.

2.3. Evaluation of produced granules

Following each granulation, the statistical granule
size, the size distribution, the bulk and the tapped vol-
umes, the flow rate and the repose angle of the granules
have been determined.

Particle size analysis (n= 5) was performed on a lab-
oratory sieve machine Retsch type VE 1000 with am-
plitude 0.2 for 6 min. The particle size distribution ob-
tained was plotted on a Rosin, Rammler, Sperling, and
Bennet (RRSB) nomogram. The size corresponding to
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Fig. 2. The functioning of the Innojet booster Opojet type ITS 140.

63.2% on the passage percentage axis was taken as the
statistical diameter. The geometric mean granule size,
d50, was taken by the use of log normal distribution.
The particle size distribution was taken by calculating
the geometric standard deviation (σg).

The flow rate (n= 5) was measured as the required
time (s) for granule samples (100 g) to flow through a
9.5 mm orifice.

The bulk volume of each sample (50 g) was mea-
sured in a 100 ml graduated cylinder (n= 5).

After each granulation process, the residual mois-
ture of granules was determined using an electronic
moisture analyzer Scaltec type SMO 01, which uses
thermogravimetric principles. At the end of the granu-
lation process, the granules have been dried for 5 min.
During the drying process, samples were taken when
the bed temperature had risen 20% beyond the final
granulation temperature (n= 3). A sample weighing ap-
proximately 5 g was spread onto an aluminium pan and
was placed in the analyzer. The sample was heated to
100◦C and evaporative moisture losses were recorded
and automatically reported as percent moisture content.

2.4. Computational methods

A generalized regression neural network (GRNN)
was trained for the studied granulation process.

GRNNs were introduced by Specht in 1991 and
estimate the most probable value for continuous de-
pendent values of a given dataset. They compute the
probability density functions of the given patterns
and finally attribute them to the value to which they
most likely belong (Specht, 1991). GRNNs are feed-
forward networks which are comprised of four lay-
ers (Fig. 4). The input layer is constituted by a vary-
ing number of neurons, which is equal to the num-
ber of independent features the network is trained on.
The normalized input vector is copied onto the pat-
tern units in the pattern layer, each representing a
training case. An exponential activation function is
applied and the corresponding activation level is for-
warded to the summation unit, where the density esti-
mate on each pattern of each group or possible value
is summarized. Finally, a decision with Bayesian the-
ory is established in the fourth layer (decision layer)
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Fig. 3. Innojet filter Sepajet type 280.

(Specht, 1990; Young et al., 1999; Simon and Nazmul,
2001).

A principal advantage of GRNNs is that they in-
volve a one-pass learning algorithm and are conse-
quently much faster to train than the well-known back-
propagation paradigm (Specht, 1990; Specht, 1991).
Furthermore, they differ from classical neural networks
in that every weight is replaced by a distribution of
weights. This leads to the exploration of a large num-

Fig. 4. Architecture of generalized regression neural networks.

ber of combinations of weights and is less likely to
end in a local minimum (Bruneau, 2001). Therefore,
no test and verification sets are necessary, and in prin-
ciple all available data can be used for the training of
the network. To ensure that the results of the trained
network are real and no artefacts of the training pro-
cess, an external validation can be done by predicting
new granulation parameters for experiments. The ex-
perimentally obtained granule properties may then be
compared to those predicted by the network.

3. Results and discussion

The presented GRNN has been trained by the Trajan
software package (Trajan Neural Networks 5.0, 1999).
As input, the seven product and process parameters
have been used, namely batch size, amount and con-
centration of binder solution, liquid-binding spray rate,
atomizing air pressure, inlet air temperature and air ve-
locity. The output has been defined as the correspond-
ing granule properties such as the statistical granule
size, the granule size distribution, the flow rate, the re-
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Fig. 5. Prediction accuracy of the GRNN for the training set when individual parameters are excluded.

pose angle and the difference between bulk and tapped
volumes. Consequently, the obtained network archi-
tecture consisted of seven units in the input layer, 45
pattern neurons, six neurons in the summation layer
and five output units. The averaged absolute error for
the prediction of the granule properties from the gran-
ulation parameters was found to be 0.050, whereby the
error has been defined as the sum of the squared differ-
ences between the predicted and actual output values
on each output unit.

The contribution of each parameter to the predic-
tion of the granule properties has been estimated by a
sensitivity analysis. During this analysis, it has been
tested how the GRNN would cope if each of the pro-
cess parameters in turn were unavailable. Therefore,
the experimental data has been submitted to the net-
work repeatedly, with each process parameter in turn
treated as missing, and the resulting network error has
been reported. If an important parameter was deleted in
this fashion, the error increased significantly; whereas
if an unimportant one has been removed, the error was
only slightly influenced. The results of this sensitivity
analysis are illustrated inFig. 5. It can be seen that the
most important descriptor contributing to the final net-
work was the atomizing air pressure. Its removal from
the input variable resulted in an increased error of 0.11.
The other most important descriptors were the air ve-
locity, the spray rate and the amount of binder solution.
Their removal from the input variable resulted in an in-
creased error of 0.09, 0.07 and 0.085, respectively.

ties
o have

shown that the moisture content of granules is signifi-
cantly affected by varying the amount of binder solu-
tion, the binder spray rate and the atomizing air pres-
sure. On the one hand, an increase of the amount of
binder solution and the spray rate, and on the other
hand, a decrease of the atomizing air pressure resulted
in increased moisture levels causing size enlargement
of the produced granules. Granules with a wide size
distribution are caused by too high or not sufficient
moisture levels in the bed. Therefore, achieving the op-
timal moisture content during the granulation process
is the key for obtaining granules with a narrow size dis-
tribution. Surprisingly, there have been no significant
correlations between the inlet air temperature and the
mean granule size. Correlations of atomizing air pres-
sure, spray rate and amount of binder solution with
mean granule size, granule size distribution and resid-
ual moisture of granules are illustrated inFig. 6. The
important role of the moisture content in size enlarge-
ment of particles was previously described (Kristensen
and Schaefer, 1987; Watano et al., 1991, 1997a; Frake
et al., 1997; Rantanen et al., 1998; Abberger, 2001).

The bulk and tapped volumes have been signifi-
cantly affected by increasing the amount of binder so-
lution (Fig. 7) and the flow rate has been correlated to
the amount of binder solution (Fig. 8).

The standard Pearson’sR correlation coefficients
between the experimentally measured and by GRNN
predicted output values are depicted inTable 1. Fur-
thermore, the corresponding prediction accuracy for
t ich
h f
This is confirmed by the analyses of the proper
f the corresponding test granules. These analyses
he different granule properties is summarized wh
as been evaluated by considering±10% cut-offs o
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Fig. 6. Correlations of atomizing air pressure, spray rate, amount of binder solution and the air velocity to mean granule size, granule size
distribution and the residual moisture of granules. (a) Correlation of atomizing air pressure with either mean granule size or residual moisture
of granules. (b) Correlation of atomizing air pressure with either granule size distribution or residual moisture of granules. (c) Correlation of
spray rate with either mean granule size or residual moisture of granules. (d) Correlation of spray rate with either granule size distribution or
residual moisture of granules. (e) Correlation of amount of binder solution with either mean granule size or residual moisture of granules. (f)
Correlation of amount of binder solution with either granule size distribution or residual moisture of granules. (g) Correlation of air velocity
with either mean granule size or residual moisture of granules.
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Fig. 7. Correlation of amount of binder solution with either bulk or
tapped volumes.

Fig. 8. Correlation of amount of binder solution with flow rate.

the highest experimentally measured values. The over-
all prediction accuracy is very impressive (93.8%), only
6.2% of the predictions lie outside the applied±10%
regions.

To confirm the network’s ability to predict granule
properties, the trained GRNN has been used to pre-
dict granulation parameters resulting in defined gran-
ule properties. For this process, mean granule sizes be-
tween 250 and 800�m have been chosen. The proper-
ties of the mathematically forecasted and experimen-
tally obtained granules have then been compared and
were all found to be within the±10% cut-offs.

Table 1
Correlation coefficients and prediction accuracy for the studied gran-
ule properties

Granule property Correlation
coefficient

Prediction
accuracy (%)

Mean granule size 0.94 91.1
Size distribution 0.96 91.1
Flow rate 0.97 95.6
Angle of repose 0.95 97.8
(Bv − Tv)a 0.92 93.3

a (Bv − Tv) = difference between bulk and tapped volumes. Ta
bl
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The forecasted values from GRNN for five batches
are given inTable 2together with the corresponding
experimental results.

4. Conclusions

The GRNN analysis enabled us to investigate the
complex relationship between the individual parame-
ters affecting size enlargement and granule properties
and to predict granule properties such as, size, size dis-
tribution, bulk and tapped volumes and flow rate from
different process and product parameters. Good corre-
lation has been obtained between predicted and exper-
imental data.

Investigations of the particle size and particle size
distribution of granules, produced by adjusting differ-
ent process and product parameters, showed the key
role of the atomizing air pressure in the size enlarge-
ment of particles. The other important parameters were
the spray rate, the amount of binder solution and the
air velocity.

The innovative modifications provided the possibil-
ity to produce granules with compact structures, low
porosity and narrow particle size distributions.
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Jäger, K.F., Bauer, K.H., 1982. Auswirkungen der Gutbewegung im
Rotor-Wirbelschicht-Granulator auf die Aufbauagglomeration.
Pharm. Ind. 44, 193–197.

Jones, D.V., 1988. Air suspension coating. Encyclopedia of Phar-
maceutical Technology, vol. 1. Marcel Dekker, New York, p.
189.

Jozwiakowski, M.J., Jones, D.M., Franz, R.M., 1990. Characteriza-
tion of a hot-melt fluid bed coating process for fine granules.
Pharm. Res. 7, 1119–1126.

Klocker, J., Wailzer, B., Buchbauer, G., Wolschann, P., 2002.
Bayesian neural networks for aroma classification. J. Chem. Inf.
Comput. Sci. 42, 1443–1449.

Kristensen, H., Schaefer, T., 1987. Granulation, a review of pharma-
ceutical wet granulation. Drug Dev. Ind. Pharm 13, 803–872.
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